Precision PCB Fabrication, PCB Assembly, Components sourcing,  No MOQ...
We provide the most competitive PCB & PCBA products.
Customized pcb board circuit
You are here: Home » PCB Blogs » Knowledge » Scanning the electromagnetic waves in printed circuit board

Scanning the electromagnetic waves in printed circuit board

Inquire

facebook sharing button
twitter sharing button
line sharing button
wechat sharing button
linkedin sharing button
pinterest sharing button
whatsapp sharing button
kakao sharing button
snapchat sharing button
sharethis sharing button

Circuits that carry rapidly changing electrical currents can generate unwanted electromagnetic waves, wasting energy, causing interference with other electronic equipment, and potentially posing health risks to users. To ensure that such emissions are within acceptable limits, electronic products such as mobile phones and laptops must undergo tests for this electronic smog before they can be marketed. Those tests have traditionally been done in large rooms designed to capture all the electromagnetic waves emitted from the device.
 
An alternative to this costly process involves scanning the electromagnetic printed circuit board field very close to the devices circuit boards (the near field), and then calculating the resulting radiation at a distance (the far field). But those calculations can take powerful computers many hours to complete electronic. The mathematical model developed by Zhao and co-workers translates near-field measurements into an accurate estimate printed circuit board of far-field radiation in less than 10 minutes on a standard desktop computer printed circuit board. Our simulation technique could help to shorten the product design cycle, save laboratory space, and reduce product development cost, says Zhao.
 

PCB数学建模-2

The researchers model mathematically printed circuit board mimics the readings from a scan of the near-field above a printed circuit board. Their simulation relies on a series of virtual magnetic dipoles effectively tiny, imaginary bar magnets electronic that collectively replicate the variations in the measured magnetic field printed circuit board. The simulation runs iteratively, each time altering the magnetic dipoles so that they fit the data better. This process of differential evolution eventually produces a solution that is a sufficiently close match to the circuit-boards near field. Printed circuit board the researchers then use those magnetic dipoles to simplify their calculation of the far-field radiation produced by the device printed circuit board.

The researchers tested their model using simulated near-field data from a thin, L-shaped metal strip laid on a small circuit board. The data contained 1,273 sample points, each 10 millimeters above the board. The model could approximate this magnetic field using just a few virtual magnetic dipoles.

Printed circuit board the match improved as they added more dipoles, until they reached very good agreement at nine dipoles adding a tenth did not significantly improve the match printed circuit board. The team is now working to refine the system to make it suitable for use by the electronics industry.

Table of Content list
Sign up for our newsletter

PCB Fab

PCB Assembly

Capabilities

CONTACT US
General Inquiry
Email: sales@syspcb.com
Phone: +86-0769-82201689
Fax: +86-0769-87799518

Tech Support
Email: tech@syspcb.com
Phone: +86-0769-82201689
SOCIAL NETWORKS
Copyright © 2024 SYS Technology Co., Ltd. All Rights Reserved.|Privacy policy|sitemap
We use cookies to enable all functionalities for best performance during your visit and to improve our services by giving us some insight into how the website is being used. Continued use of our website without having changed your browser settings confirms your acceptance of these cookies. For details please see our privacy policy.
×