Precision PCB Fabrication, PCB Assembly, Components sourcing,  No MOQ...
We provide the most competitive PCB & PCBA products.
Customized pcb board circuit
You are here: Home » PCB Blogs » Knowledge » Capacitors aren't so passive

Capacitors aren't so passive

Inquire

facebook sharing button
twitter sharing button
line sharing button
wechat sharing button
linkedin sharing button
pinterest sharing button
whatsapp sharing button
kakao sharing button
snapchat sharing button
sharethis sharing button

Capacitors, resistors, inductors, connectors, and even the PCB are called passive because they don’t seem to consume power. But these apparently passive components can, and do, change the signal in unexpected ways because they all contain parasitic portions.

Transistors and ICs are considered active components because they change signals using energy from the power supply. Capacitors, resistors, inductors, connectors, and even the printed-circuit board (PCB) are called passive because they don’t seem to consume power. But these apparently passive components can, and do, change the signal in unexpected ways because they all contain parasitic portions. So, many supposedly passive components aren’t so passive.


Chip capacitors


Passive can be defined as inert and/or inactive. But passive electronic components can become an active part of a circuit in unexpected ways. Consequently, a capacitor that is purely capacitive simply does not exist. All capacitors inherently have parasitic components. The choice of the capacitor chemistry and construction can minimize some prarsitics.

贴片电容-2

Thinking more about signal frequencies and capacitors, we might forget about the harmonics or sideband that we create. For example, a real 50-MHz square-wave serial peripheral interface (SPI) clock will have odd harmonics to infinity. Most systems, but not all systems, can ignore harmonics above the fifth harmonic because the energy is so low that it is below the noise floor. However, the harmonics can still cause problems if they become rectified in a semiconductor and can be transformed into new lower-frequency interference.

The capacitors act as capacitors, but when they reach their lowest point and start upward, they become inductors(ESL) and are no longer effective as decoupling capacitors

What does this mean for our passive capacitors? We must understand that the tolerance we might expect, for example ±5%, may have a ±2% hole in the middle. We need to allow for this if the capacitor controls a critical frequency or timing. It also could mean that we need to plan on correcting wider variation with calibration.


Table of Content list
Sign up for our newsletter

PCB Fab

PCB Assembly

Capabilities

CONTACT US
General Inquiry
Email: sales@syspcb.com
Phone: +86-0769-82201689
Fax: +86-0769-87799518

Tech Support
Email: tech@syspcb.com
Phone: +86-0769-82201689
SOCIAL NETWORKS
Copyright © 2024 SYS Technology Co., Ltd. All Rights Reserved.|Privacy policy|sitemap
We use cookies to enable all functionalities for best performance during your visit and to improve our services by giving us some insight into how the website is being used. Continued use of our website without having changed your browser settings confirms your acceptance of these cookies. For details please see our privacy policy.
×